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Viscoelastic interfacial modes in a wetting layer
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Brillouin scattering from an evanescent wave enables us to study the dynamic structure factor S (k,w)
of fluids within 1 um of a solid wall. Two interfacial fluid modes are found in a demixed binary-fluid sys-
tem where a wetting layer of the heavy phase intrudes between the lighter phase and the solid wall.
Surprisingly, the propagation velocity of one of these modes differs significantly from that of the corre-
sponding bulk mode. A hydrodynamic calculation reveals that the alteration of the velocity cannot be
explained in terms of continuity of the bulk transport properties over the interface. We propose that the
shift in the propagation velocity is due to the viscoelastic character of the fluid-fluid interface.

PACS number(s): 68.45.—v, 68.10.—m

INTRODUCTION

The existence of hydrodynamic surface modes and
their dispersion relations has been studied extensively in
recent years [1-3]. The reason for this interest is two-
fold. First, the dispersion relation of these interface
waves contains information on the transport of energy or
momentum across interfaces [4]. This could be of in-
terest for areas as diverse as the study of surface chemical
reactions [4], fluid mechanics [5], and seismology [6].
Second, measurement of these interfacial waves might
provide more insight into the microscopic structure of
the transition region between two bulk fluid phases [7-9].
In most phenomenological treatments, the surface is de-
scribed as a step profile in the density rather than a
separate phase in which the order parameter changes
continuously from one phase to another. In the latter
case, several groups have shown that the surface trans-
port properties are not necessarily the same as those of
the bulk fluid. The notion of, for instance, a surface
viscosity [10] that is different from the bulk one seems to
have been generally accepted. As for the interface waves,
it has been proposed [7] that the response of the surface is
viscous at low frequencies, elastic at high frequencies,
and viscoelastic in the intermediate regime.

For molecular liquids, most of the experimental studies
so far have focused on the low-frequency regime where
capillary waves are the dominant contribution to the
structure factor [11,12]. At somewhat higher frequen-
cies, measurements at the interface between a solid and a
liquid have shown that an interfacial fluid mode can exist
with a propagation velocity equal to that of the bulk
sound mode [13]. Also, Dil and Brody [14] have found
that an interfacial wave propagates along a liquid-vapor
interface with a velocity equal to the longitudinal sound
velocity in the liquid.

In this paper we present light-scattering measurements
of the dynamic structure factor S(k,w) in the
cyclohexane-methanol binary-liquid system, where a thin
wetting layer (=300 A) of the methanol-rich phase in-
trudes between the cyclohexane-rich phase and the walls
of a quartz container [15]. This remarkable phenomenon
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has been studied extensively in recent years [16,17], but
so far no attention has been paid to the equilibrium fluc-
tuations in such thin layers. We show that, when the re-
ciprocal of the wave vector k in the scattering experiment
is comparable to the layer thickness d, kd =1, two inter-
facial fluid modes exist. One of these two modes has a
propagation velocity higher than the bulk sound velocity
in either of the two phases. A hydrodynamic calculation,
where the interfacial stresses are calculated using the
bulk transport coefficients, cannot successfully account
for this finding. It is therefore proposed that the
disagreement between theory and experiment is due to
the viscoelasticity of the interface. This enables us to
make an estimate of the magnitude of the elasticity
modulus.

EXPERIMENT

At the critical concentration, the wetting transition
takes place [17] at T=294 K. The experiments were per-
formed at 298 K. The measuring cell is shown in Fig.
1(a). Half of the cell consists of a quartz semicylinder

FIG. 1. (a) Schematic side view of the measuring cell. The
left-hand side is the quartz semicylinder; the right-hand side is
filled with the binary-fluid system. The measurements are per-
formed at two different heights in the cell: 2 denotes the inter-
face of the quartz with the methanol-rich phase; in 1 there is a
wetting layer present in the scattering volume. (b) Top view of
the measuring cell; the angle of incidence ¢ determines the
penetration depth of the evanescent wave. The scattering angle
is denoted as 6.
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(shaded area); the other half can be filled with the
binary-fluid system. The methanol-rich phase is the most
dense phase and intrudes between the cyclohexane-rich
phase and the quartz wall. The cyclohexane and
methanol are filtered through a 0.22-um Millipore filter.
The sample had a critical temperature of 50.4 °C, suggest-
ing the presence of 0.2 wt % water impurity [17]. The
quartz is polished to small scale deviations from flatness
less than A /20, cleaned with a chromic acid solution,
rinsed many times with water, and then dried.

The experimental setup is shown in Fig. 2. An Ar-ion
laser (A=514.5 nm) is focused in the center of the cell at
the quartz-liquid interface. The angle of incidence of the
laser beam, ¢, is slightly larger than the critical angle of
the total internal reflection ¢.. This is depicted in Fig.
1(b), where the scattering geometry is shown schematical-
ly. The beam is totally reflected at the quartz-liquid in-
terface, generating an evanescent wave (EVW) in the
liquid, which propagates along the boundary in the plane
of incidence. The field of the EVW decays exponentially
from the interface into the bulk with a penetration depth
depending on the difference between the angle of in-

cidence ¢; and the critical angle of total internal
reflection ¢, [18]:
Epvw=(A/2TN gyory, Nsin’; —sin’e, ) "1 /2 . (1)

The penetration depth can therefore be varied experimen-
tally, and has a typical value &pyw=1.34 pum for
¢=¢,.+0.2°. This field with a real wave vector k; paral-
lel to the interface and an imaginary component equal to
the inverse penetration depth acts as a source for scatter-
ing. The scattered light with wave vector k, is collected
and analyzed by a triple-pass Fabry-Pérot interferometer
with a free spectral range vpgg =2.68 X 1010571,

The measurements are performed at two different
heights in the measuring cell, denoted as 1 and 2 in Fig.
1(a). In the latter case, one measures the dynamic struc-
ture factor at a solid-liquid interface. In the former case,
there is a wetting layer present in the scattering volume.
In this geometry, the effective index of refraction can be
estimated from the critical angle of total internal
reflection [19]. This shows the index of refraction to be
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FIG. 2. Schematic view of the experimental setup. The angle
of incidence and the scattering angle can be varied independent-
ly. BS = beam splitter, M = mirror, BE = beam expander, L
= lens, P = pin hole.

close to that of the cyclohexane-rich phase, n.4=1.405,
while n; i, =1.42 and ny, e =1.35; ngyan, =1.46. Hav-
ing found the effective index of refraction in the liquid
half-space, we can relate the absolute value and the
tangential component of the wave vector k to the scatter-
ing angle 6 as k =2ksin(50) and k, =2kfsin2(—2‘—0), re-
spectively, where k,=2mn g/A. In this way, one obtains
the dynamic structure factor S(k,0) with v=w, —w; for
a fixed value of Ak =k —k; [20].

RESULTS

A typical measurement of the structure factor with a
wetting layer present in the scattering volume is shown in
Fig. 3, where we depict two spectra with approximately
the same scattering wave vector but with a different
penetration depth of the evanescent wave. As is evident
from the figure, we observe several propagating modes,
which can be identified by their wave-vector dependence
and propagation velocities. By plotting the frequencies as
a function of the wave vector, we are able to identify the
longitudinal sound mode of the solid (peaks D and E) and
a bulk liquid sound mode (peak C) with a sound velocity
that equals that of the cyclohexane-rich phase. These can
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FIG. 3. Two typical spectra with scattering angles 6=55°
(top) and 6=55°12" (bottom) from the interface of the quartz
with the demixed binary-liquid system. A and B are scattering
from the interface modes, C is the bulk sound mode of the
cyclohexane-rich phase, D and E are quartz Brillouin lines (lon-
gitudinal mode), D direct, order 2, E totally reflected, order 2
(the order is the multiple of the free spectral range to be added
to w). The high intensity at zero frequency is due to interface
imperfections. The frequency scale equals half of the free spec-
tral range.
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be used as an internal reference to calibrate frequency
and wave vector. The frequencies of the remaining two
peaks (A4 and B) are plotted against the wave vector in
Fig. 4, together with the bulk sound mode. Figure 4
demonstrates the usual linear dispersion w=c Ak for the
bulk mode, where ¢, is the adiabatic sound velocity. A
least-squares fit to the data yields the adiabatic sound ve-
locity of the cyclohexane-rich phase; ¢, =1204+8 ms™!,
in agreement with the literature value [21]: ¢,=1210
ms~!. The frequencies of the other two modes appear
below this line, obviously not on straight lines through
the origin. Returning to the original spectra, we see that
if the cell is turned through 0.20°—hereby diminishing
the penetration depth of the evanescent wave from 1.2 to
0.8 um while leaving the scattering geometry practically
unaltered—the amplitude of the bulk sound mode de-
creases dramatically, whereas the intensity of the two
peaks that we now identify as interface modes gains
about a factor of 2 in magnitude. Moreover, fluctuating
hydrodynamics [4] predict that, when neglecting possible
mode-coupling effects, the dispersion of interface modes
is linear in the component of the wave vector parallel to
the interface, co~Ak”, and should be independent of the
normal component of the wave vector, Ak,. Plotting the
frequencies as a function of Ak (Fig. 5), it appears that,
indeed, the points are on two different straight lines
through the origin. Thus by measurement of the dynam-
ic structure factor S(k,w) for different values of k we
have found two interfacial fluid modes, with a linear
dispersion relation that depends only on Ak,. Also the
possibility of changing the penetration depth appreciably
without changing the scattering geometry significantly is
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FIG. 4. Dispersion relations o vs Ak =k, —k; for the fluid
and interfacial modes. Boxes: bulk mode. The straight line has
a slope that equals the bulk sound velocity of the cyclohexane-
rich phase, ¢, =1204+8 ms™. Plusses and triangles: “fast” and
“slow” interface modes, respectively.
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FIG. 5. Dispersion relation of the interface modes:  vs the
part of the scattering vector parallel to the interface,
Ak =(k;—ky);. Plusses: fast mode. The straight line has a
slope v =1301%+15 ms™!. Triangles: slow mode. The line has a
slope v, =1078+20 ms 1.

essential for the accurate measurement of the small-
amplitude interfacial modes.

From the dispersion relations depicted in Figs. 4 and 5,
we can  extract the  propagation velocities
V4= 4p5/Ak of these modes. For the slower of the
two modes (peak A4), we find a propagation velocity
v,=10784+20 ms~ ! whereas the methanol bulk mode
propagates with a velocity ¢, =1081+10 ms~!. Indepen-
dent measurement of the bulk and the interface modes at
the interface of the methanol-rich phase and the quartz
[denoted as 2 in Fig. 1(a)] shows that an interfacial mode
with the same dispersion relation as the “slow” mode in
the wetting layer is found here. The surprising result is
that, although the fast mode (peak B) seems to have the
predicted linear dispersion relation, its propagation ve-
locity vy =1301+15 ms ™! is significantly higher than the
bulk sound velocity in either of the two fluid phases. The
bulk modes of the cyclohexane-rich phase, measured in
the same experiment, has an adiabatic sound velocity
¢;=1204+8 ms~!. Independent measurement of the
cyclohexane-quartz interface mode in another cell with
only cyclohexane reveals the presence of an interface
mode that has, again, the same propagation velocity as
the bulk mode.

The results for the propagation velocities as a function
of the wave number of the excitation (Ak for the bulk
modes, Ak” for the interface modes) for both the bulk
fluid and the interface waves are summarized in Fig. 6.
The propagation velocity of the slow mode is, within the
experimental error, equal to the adiabatic sound velocity
of the methanol-rich phase. Also, it can be observed
that, within the experimental resolution, there is a clear
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FIG. 6. Propagation velocities of the bulk and interface
modes vs the wave number of the excitations, Ak for bulk
modes, Ak for the interface modes. Lowest line: slow interface
mode measured in the wetting layer (triangles) and bulk
methanol sound mode measured at the quartz-bulk methanol in-
terface (crosses), ¢, =1081 ms™!. Plusses: bulk sound mode of
the cyclohexane-rich phase, ¢,=1204 ms~2. Boxes: propaga-
tion velocity of the fast interface modes, vy =1301 ms™2.

distinction between the velocities of the fast interface
wave and the bulk sound waves in the cyclohexane-rich
phase.

To account for the damping of the waves, the peak
width of both the bulk and the interface modes are plot-
ted in Fig. 7 as a function of the squared wave number k2
of the excitation, Ak? for the bulk modes and Akﬁ for the
interface modes. As can be observed from the figure, the
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FIG. 7. Damping of the bulk and interfacial modes Aw vs the
squared wave number of the excitation. Triangles and plusses:
cyclohexane bulk mode and fast interface mode, respectively.
Squares and crosses: methanol bulk sound mode [measured at
location 2 in Fig. 1(a)] and slow interface mode, respectively.

fast interface mode has the same damping as the bulk
sound mode of the cyclohexane-rich phase, and the
damping coefficient for the slowinterface mode is approx-
imately the same as that for the methanol-rich phase.

Summarizing, in the presence of a wetting layer in the
scattering volume, the dynamic structure factor S(k,w)
exhibits two new peaks which are interfacial fluid modes.
One of these modes has a propagation velocity that
equals the bulk sound velocity of the wetting phase. The
other interface mode has a velocity higher than the sound
velocity in either of the two liquid components. The
damping of the interfacial waves depends only on the
component of the wave vector parallel to the interface
and is, within the experimental error, equal to the damp-
ing of the corresponding bulk sound modes.

HYDRODYNAMICS

Stimulated by these results, we performed a hydro-
dynamic calculation to account for the existence of the
two interface modes, their propagation velocities, and
their damping coefficients. For our system the acoustic
impedances, the product of the density p and the adiabat-
ic sound velocity c,, are pc, =9.3X10° kgm 25~ ! for the
cyclohexane-rich phase and pc,=8.4X10° kgm 25!
for the methanol-rich phase. Parameters for quartz are
p=2.1X10* kgm ™3, the longitudinal sound velocity
¢, =5730 ms~ !, and the transversal sound velocity
c,=3720ms" L.

In the small wave-vector limit the dynamic structure
factor S (k,k”,w) close to an interface can be calculated
by solving the hydrodynamic equations together with the
appropriate boundary conditions [4,6]. The boundary
conditions to be fulfilled are the continuity of normal and
tangential stresses and the continuity of the normal dis-
placements at the interface. For the wetting system un-
der discussion here two interfaces are relevant: a solid-
liquid and a liquid-liquid interface separated by a dis-
tance d. In Cartesian coordinates, with the z axis normal
to the surface, the components of the fluctuating part of
the stress tensor in an isotropic elastic solid are

u
O 52z = Ps c[2 a;z +(c12_20t2)¢s ’
(2)
ausz ausxi

— 2
Uszxi =PsC;

ox; + oz

where x; =x,y, the subscript s stands for solid, p is the
density, ¢; and c¢, are the longitudinal and transversal
sound velocities, u is the displacement, and
¢=0u,, /3x +0uy, /dy. For a Newtonian fluid, these
components of the stress tensor are given by

ou,
o,=—8p+p (T, % +(T,—2v)¢ |,
(3)
_ ou, 4 ou;
T2, PV ox, " 8z |’

where x; =Xx,y, u now stands for the velocity field, v is the
kinematic and I'", the longitudinal viscosity and &p is the
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fluctuating pressure. It has been shown elsewhere that
[4], together with the continuity of velocities at the inter-
face, these equations constitute a complete set of bound-
ary conditions on the hydrodynamic variables. After tak-
ing the appropriate Fourier and Laplace transforms these
J

equations can be solved and yield the dispersion relations
of the interface modes.

Then, limiting ourselves to first order in the wave vec-
tor k it can be shown that the dispersion relations we
seek are roots of the complex eigenvalue equation:

[a3y2—-a27/3][4(p1/p2)a2kﬁ(a131+p2)+a1k,4]+[a3y2+a273][4(p1/p2)a2kﬁ(a1B1+p2)-—a1k,4]exp( —2iayd)=0,

where p; is the density of phase i and the indices 1,2, and
3 refer to the solid phase, the methanol-rich phase, and
the cyclohexane-rich phase, respectively. Here

a;=(0?/c!—k})'?, Bi=(a’/c]—k})'?,
?’i———p,-ciz(kﬁ-f-a?), pz(kﬁ_ktz/Z)kH_l ,

where ¢; is the longitudinal bulk sound velocity of phase
i, ¢, is the transverse sound velocity of the solid, and
k,=w/c,. Numerical evaluation of the equation shows
that, apart from the well-known Rayleigh wave, there are
two solutions, corresponding to two interfacial fluid
modes. The result is shown in Fig. 8, where the propaga-
tion velocities are shown as a function of the reduced
wave vector, the product of the layer thickness d and the
wave factor k. The velocity of one of the modes is in-
dependent of kd, v=c, (the sound velocity in the
methanol-rich phase). The other mode has a propagation
velocity that goes from v =c; (c; in the cyclohexane-rich
phase) in the limit of small reduced wave vector k,d to
v=c, in the limit of large kd. A density-of-states calcu-
lation, equal to that presented by Jing, Sheng, and Zhou
[22] for a suspension of coated colloidal particles, yields
the same result [23]. Both calculations also show that if;
for the fast mode, the reduced wave vector k”d exceeds a
cutoff given by n2, where n is an integer, that there ap-
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FIG. 8. Propagation velocities of the two interface modes

calculated from Eq. (4). The wave vector is normalized on the
layer thickness.

1oso—t—t— 21—
O =2 a4a 6 8

4)

—

pear n waveguide modes with a slightly higher phase ve-
locity.

This implies that in the limit of small reduced wave
vector the velocities of the interface modes should ap-
proximately be equal to the sound velocities of the corre-
sponding bulk modes. We believe the measurements to
be in the limit of small reduced wave vector, since a sensi-
ble estimate for the layer thickness is d =300 A. Then
k,d varies between 0.3 and 0.9 in our experiments. In
this limited wave-vector range there is no observable
dispersion in the calculated velocities. In Fig. 9 the re-
sults of the calculation are compared with the experimen-
tal data, taking d =300 A. Although there may be agree-
ment in a qualitative sense, it is immediately clear that
the measured and calculated propagation velocities for
the fast mode are not in quantitative agreement. Also, no
agreement can be found by taking a different layer thick-
ness, since, by assuming that the measurement are in the
limit of small kd, the calculated velocity already has its
highest possible value.

In deriving the equation, all higher-order effects have
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FIG. 9. Comparison between theory and experiment: the
dispersion relations in dimensionless units calculated from Eq.
(4) for the wetting layer thickness d =300 A. The wave vector is
normalized on the layer thickness, the frequency on the layer
thickness and the sound velocity of the methanol-rich phase.
Experimental data are shown as triangles (fast mode) and
plusses (slow mode).
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been neglected. This means that (i) dissipative (viscous)
effects have not been taken into account. Also, (ii) the
influence of interfacial energy transport has not been con-
sidered; if the sound is not isothermal, y =(C,/C, )71,
the propagation velocity of the interface modes can be al-
tered due to heat conduction between the two phases de-
pending on the ratio of thermal diffusivities of the two
components. However, both the viscous and the ther-
mal penetration depth [24], d,=(2v/c,k)? dp
°=(2DT/csk )12 are estimated to be on the order of 100
A and thus do not exceed the estimated film thickness.
For the two modes that were observed experimentally,
the viscous penetration depth is calculated to be 100 A
for the fast mode and 85 A for the slow mode. This
would mean that the two effects mentioned above do not
have a very large influence on the propagation velocities
of the interface modes. Finally, (iii) the possible coupling
of the interface waves with the capillary waves has not
been considered up till now; in first approximation only
the capillary waves at the liquid-liquid interface would
have to be taken into account, due to the high stiffness of
the solid phase. The inclusion of the surface tension
leads to a different boundary condition for the normal
stresses at the liquid-liquid interface [25]:

(azz2_0223)_%ykﬁ(u22+u23):0 ’ (5

where 2 and 3 again denote the methanol-rich and the
cyclohexane-rich phases, the o, terms are given by Eq.
(3), and v is the interfacial tension of the liquid-liquid in-
terface. Together with the boundary condition for the
velocities the inclusion of the surface tension term pro-
duces a new solution at low frequencies (and large layer
thickness) of Eq. (4):
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which is the well-known dispersion relation of capillary
waves at a fluid-fluid interface [26]. However, the in-
clusion of this term in the boundary condition produces a
very small effect on the propagation velocities of the in-
terface modes. ALso, the inclusion of either the thermal
diffusivity and/or the viscosity does not cause a
significant shift in the calculated propagation velocities.
Numerical evaluation of Eq. (4) with the inclusion of
these terms confirms this. Thus the remaining discrepan-
cy between theory and experiment may not be resolved
by including higher-order effects in the calculation.

To summarize, in the hydrodynamic calculation, the
adiabatic compressibility x,=1/(pc?), which gives the
propagation velocities of the sound and interface waves,
it taken to be the same for both the bulk and the inter-
face. In the limit of small kd the calculation predicts
that the interface modes should have the same velocity as
the corresponding bulk modes. The measurements, how-
ever, indicate that the local compressibility at the inter-
face, which determinates the propagation velocity of the
fast interface mode, is different from that in the bulk. It
is therefore proposed that the observed velocity shift is
caused by the viscoelasticity of the interface, which
amounts to the introduction of a local ‘surface”

compressibility that can, in general, be different from its
bulk value.

VISCOELASTICITY

The viscoelastic regime, intermediate between the low-
frequency hydrodynamic and high-frequency elastic
behavior, can be described [27] phenomenologically by
the introduction of frequency-dependent elastic moduli
and a frequency-dependent viscosity 1(w). The viscosity
is then given by

T
(1+ior) ’
where G is the high-frequency shear modulus and 7 is
the stress relaxation time of the system, also referred to
as the Maxwell relaxation time. The frequency depen-

dence of the shear modulus G and the bulk modulus KX is
then given by

n(w)= (7)

Gw)=ion(w) ,
K(w)=Kyt+ion(o),

(8)

where K, is the reciprocal adiabatic compressiblity.
Then the behavior of the fluid crosses over from viscous
at low frequencies to elastic at high frequencies. The ve-
locity ¢; of the longitudinal waves traveling in the viscoe-
lastic medium is determined by the elastic constant c;
and is given by [7]
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where p is the mass density and c;; can be written in
terms of the bulk and shear moduli as ¢;; =(K+%G). In
analogy to the treatment for bulk phases, Tejero and
Baus [7] have shown that the viscoelastic equations for a
surface can be obtained by introducing surface Maxwell
formulas equal to those presented above, but with the
relevant quantities (elastic constants and viscosities) re-
placed by their surface excess values [28]. The propaga-
tion velocities of the longitudinal interfacial waves is now
determined by the surface elastic constant ¢,;. Taking the
measured value ¢;=1301 ms ™!, this yields ¢;, =1.3 X 10°
N/m?, about 15% higher than the measured bulk value
for the cyclohexane-rich phase.

A rough estimate of the relaxation time can be ob-
tained from the approximate relation [27]

=

3

" S(k)

2
Vi
where w, is the measured frequency, w, the frequency in
the thermodynamic limit, and S(k) the static structure
factor. If the structure factor at these large scales is tak-
en as unity, one finds a relaxation time 7=9X107'!'s, a
very slow relaxation time, since for normal (molecular)
bulk liquids, 7 is on the order of 102 s,

In principle, since 7 is the only parameter in this mod-
el, it would now be possible to calculate the elastic modu-
li K and G and thus the viscoelastic response over the en-

e

—1_

) (10)
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tire frequency regime. However, since these measure-
ments are in a very limited wave vector range,
107<k” <3X107, and thus effectively represent only a
single frequency point in the entire viscoelastic regime,
this does not seem justifiable and will not be pursued
here. Also, it should be noted that, in general, one
would expect a viscoelastic wave to have a smaller damp-
ing than the corresponding hydrodynamic wave. In our
case, however, the errors in the measured attenuation
coefficients are too large to draw any rigorous con-
clusions about a possible change in the damping of the
waves. From Fig. 7 it may be concluded that, if such an
effect is observed, it is in any case a change of less than
50%.

DISCUSSION

Brillouin scattering from an evanescent wave has been
used to study the equilibrium fluctuations in a system
with a wetting layer that intrudes between a fluid and a
solid wall. In this way, two fluid interfacial modes were
found, one of which has a propagation velocity equal to
the sound velocity in the wetting phase. The other inter-
facial mode has a propagation velocity higher than that
of the corresponding bulk mode. In the normal hydro-
dynamic description, the exchange of energy and momen-
tum across the interface can alter both the linear disper-
sion relation and the propagation velocity of the interface

waves. For our system, however, it can be shown that
these effects are negligible and thus cannot explain the al-
teration of the velocity. This leads us to the inference
that the bulk transport properties are not the same as
those governing the surface dynamics. The transport
properties can then be described by the introduction of
surface elastic moduli. As there is no a priori knowledge
of the magnitude of these quantities, they have to be
determined experimentally. Our measurements give an
indication for the value of ¢, but span only a very limit-
ed wave-vector range. It would therefore be very in-
teresting to repeat the experiments over a much larger
range, which would allow for a rigorous comparison with
the predictions of viscoelastic theory. The interest of
such a comparison lies in the fact that the elastic moduli
can be written in terms of the pair distribution function
[27] g(r) and thus provide information on the structure of
the fluid interface, a still-standing problem in statistical
mechanics.
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